
The Divergence 

Theorem 
 



Theorem (Stokes’s Theorem) 

C S 

Let S be an oriented piecewise-smooth surface that is bounded by a simple,  

closed, piecewise-smooth boundary curve C with positive orientation. Let F  

be a vector field whose components have continuous partial derivatives on  an 

open region in R3 that contains S. Then 

∫  ∫  ∫  

F · dr =  curl F · dS 



Divergence is infinitesimal flux 

Given a vector field F and a point (x0, y0, z0), let Sε be the sphere of  

radius ε centered at (x0, y0, z0). Define 

I(ε) =  
1 

4πε2 

   
∫  ∫  

Sε  

F · dS. 

Then a straightforward (albeit long) calculation shows that 

.  

.  
ε= 0 

 dI   1 

dε 3 0 0 0 =  div F(x , y , z ). 

So div F is measuring the “net flux” around a point. 



Interpretation of the divergence 

)  div F(x0, y0, z0) > 0  

means (x0, y0, z0) is a  

“source” 

)  div F(x0, y0, z0) < 0  

means (x0, y0, z0) is a  

“sink” 

)  div F =  0 means F is 

incompressible 



Statement of the Theorem 

Theorem (Gauß’s Divergence Theorem) 

Let E be a simple solid region and S the boundary surface of E, given with  the 

positive (outward) orientation. Let F be a vector field whose  component 

functions have continuous partial derivatives on an open region  that contains 

E. Then 

∫  ∫  ∫  ∫  ∫  

F · dS =  div F dV 

S E 



Proof of the Theorem 
See page 967 

We must show 

∫  ∫  

S 

(Pi +  Qj +  Rk) · n dS =  

E 

∫  ∫  ∫  .  ∂P ∂Q ∂R 
+  +  

∂x ∂y ∂z 

         Σ  

dV 

It suffices to show 
∫  ∫  

S 

Pi · n dS =  

   
∫  ∫  ∫  

E 
∂x 

∂P 
dV 

∫  ∫  

S 

Qj · n dS =  

   
∫  ∫  ∫  

E 
∂y 

∂Q 
dV 

∫  ∫  

Rk · n dS =  

   
∫  ∫  ∫  

∂z 

∂R 
dV 

S E 

 

We’ll show the last. The others are similar. 



Assume E is a region of type 1: 
 

E =  { (x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y) } 

Then S =  ∂E =  S1  ∪ S2  ∪ S3, where 

S1  =  { (x, y, z) | (x, y) ∈ D, z =≤ u1(x, y) } 

S2  =  { (x, y, z) | (x, y) ∈ D, z =≤ u2(x, y) } 

S3 =  { (x, y, z) | (x, y) ∈ ∂D, u1(x, y) ≤ x ≤ u2(x, y) } 



On the boundary surface S2, which is the graph of u2: 

n dS =  
∂u ∂u 2 2 

∂x ∂y 

.  Σ  

, , 1 dA 

So ∫  ∫  

S2 

∫  ∫  

D 

Rk · n dS =  R( 2 x, y, u ( x, y)) dA 



S1 

On S1, the outward normal points down, so 

∫  ∫  ∫  ∫  

D 

1 Rk · n dS  =  − R(x, y, u ( x, y)) dA 



S3 

Finally, on S3, n · k =  0, so 

∫  ∫  

Rk · n dS =  0 



S 

Putting it all together we have 

∫  ∫  ∫  ∫  

D 

2 =  (R(x, y, u (x, y)) − R( 1 x, y, u ( x, y))) dA 

=  

D 

∫  ∫  ∫  
2 u (x,y) 

u1(x,y) 

∂R 

∂z 
dz dA 

=  

∫  ∫  ∫  

E 

∂R 

∂z 
dV 



Example (Worksheet Problem 1) 

Use the Divergence Theorem to calculate the surface integral ∫  ∫  

F · dS, where 

S 

 

F =  ex sin y i +  ex cos y j +  yz2 k  

and S is the surface of the box bounded by the planes x =  0, x =  1, 

y =  0, y =  1, z =  0, and z =  2. 



Example (Worksheet Problem 1) 

Use the Divergence Theorem to calculate the surface integral ∫  ∫  

S E 

F · dS, where 

S 

 

F =  ex sin y i +  ex cos y j +  yz2 k  

and S is the surface of the box bounded by the planes x =  0, x =  1, 

y =  0, y =  1, z =  0, and z =  2. 

Solution 
We have div F =  2yz so 

∫  ∫  ∫  ∫  ∫  

F · dS =  div F dV 

=  

∫  ∫  ∫  1 1 2 

0 0 0 

2yz dz dy dx =  2. 



Example (Worksheet Problem 2) 

Use the Divergence Theorem to calculate the surface integral ∫  ∫  

F · dS, where 

S 

 

F =  (cos z +  xy2) i +  xe−z j +  (sin y +  x2z) k  

and S is the surface of the solid bounded by the paraboloid 

z =  x2 +  y2  and the plane z =  4. 



Example (Worksheet Problem 2) 

Use the Divergence Theorem to calculate the surface integral ∫  ∫  

F · dS, where 

S 

 

F =  (cos z +  xy2) i +  xe−z j +  (sin y +  x2z) k  

and S is the surface of the solid bounded by the paraboloid 

z =  x2 +  y2  and the plane z =  4. 

Solution 
Let E be the region bounded by S. We have 

∫  ∫  ∫  ∫  ∫  ∫  ∫  ∫  

E 

2 2 F · dS =  div F dV =  (x +  y ) dV 

S E 

 

Switch to cylindrical coordinates and we get 

2 2 (x +  y ) dV =  
0 

∫  ∫  ∫  ∫  ∫  ∫  2π 2 z 

0 r 

2 r · r dz dr dθ =  
2 

 32π 

3    



Theorem (Green’s Theorem) 

Let C be a positively oriented, piecewise smooth, simple closed curve in the  

plane and let D be the region bounded by C. If P and Q have continuous  

partial derivatives on an open region that contains D, then 

C 

(P dx +  Q dy) =  

D 

∂Q ∂P 

∂x  
− 

∂y 

   
∫  ∫  ∫   .  Σ  

dA 

or ∫  

C 

∫  ∫  

D 

F · dr =  dF dA 



Theorem (Stokes’s Theorem) 

C S 

Let S be an oriented piecewise-smooth surface that is bounded by a simple,  

closed, piecewise-smooth boundary curve C with positive orientation. Let F  

be a vector field whose components have continuous partial derivatives on  an 

open region in R3 that contains S. Then 

∫  ∫  ∫  

F · dr =  curl F · dS 



Theorem (Gauß’s Divergence Theorem) 

Let E be a simple solid region and S the boundary surface of E, given with  the 

positive (outward) orientation. Let F be a vector field whose  component 

functions have continuous partial derivatives on an open region  that contains 

E. Then 

∫  ∫  ∫  ∫  ∫  

F · dS =  div F dV 

S E 



Manifold Destiny 

)  A manifold is a smooth subset of Rn (roughly speaking,  

something you can do calculus on) 

)  Examples: Solid regions, surfaces, curves 

)  A manifold can have a boundary, which is of one dimension  

lower. 



)  Each of the operators gradient, curl, divergence, and even the 
∂Q ∂P 

∂x ∂y 
two-dimensional curl − are a kind of derivative. 

Q  ∂Q  

)  Each of the big three theorems takes the form 

∫  ∫  

d△ =  △, 

∫  

where Q is a  manifold, △  is a vector field, is whatever integral 

and d is whatever derivative is appropriate from the context. 



But wait, there’s more 

)  We can have zero-dimensional manifolds, too: they’re points. 

)  The integral over a zero-dimensional manifold is just evaluation  

at the points. 

)  Other fundamental theorems in calculus can expressed using 
∫  ∫  

this extension of the d△ =  △  formalism 

Q  ∂Q 



Theorem (The Fundamental Theorem of Line Integrals) 

Let C be a smooth curve given by the vector function r(t), a ≤ t ≤ b, and  let f 

be a differentiable function of two or three variables whose gradient  vector 

∇f is continuous on C. Then 

∫

C  
∇f · dr =  f(r(b)) − f(r(a)) 



Theorem (The Fundamental Theorem of Calculus) 

Let F(x) be a function on [a, b] with continuous derivative. Then 

∫

a  

b 

F′(x) dx =  F(b) − F(a). 


